
www.manaraa.com

DOCUMENT RESUME

ED 280 737 SE 047 901

AUTHOR Cobern, William W.
TITLE Programming Language Choice: A Positive albeit

Ambiguous Case for BASIC Programming in Secondary
Science Teaching.

PUB DATE Mar 86
NOTE 21p.
PUB TYPE Viewpoints (120) -- Guides Non-Classroom Use (055)

EDRS PRICE MF01/PC01 Plus Postage.
DEZCRIPTORS Cognitive Development; *Computer Science Education;

*Computer Uses in Education; Educational Technology;
Instructional Improvement; Programing; *Programing
Languages; Science Education; Secondary Education;
*Secondary School Science; *Skill Development

IDENTIFIERS *BASIC Programing Language; *PAECAL Programing
Language

ABSTRACT
With the purpose of addressing the area of language

choice in computer programming, this paper specifically addresses the
use of BASIC as a language for secondary level students. Perspectives
are offered on: (1) the role of computers in science education; (2)
the differences in quality and intent of PASCAL and BASIC; (3) the
role of a non-structured programming language approach; and (4) the
problem of cognitive matching. An increase in research is advocated
for such areas as the roles of programming in science education, an
analysis of the task structure and curriculum demand of languages
such as PASCAL, and the effect of prior unstructured programming
experience on the acquisition of structured programming skills. A
reference list is also provided. (ML)

Reproductions supplied by EDRS are the best that can be made

from the original document.

www.manaraa.com

Programming Language Choice: a Positive'Albeit Ambiguous

Case for BASIC programming ia Secondary ScieAce Teaching

U.S. OEPAIVI MENT OF EDUCATIOIll
Office of Educational Research and Impro ament

EDUCATIONAL RESOURCES INFORMATON
CENTER (ERIC)

cThis document has been repoduced as\l
eceived from the person or organization
riginating it.

0 Minor changes have been made to improve
reproduction quality.

Points of view or opinions stated in this docu-
ment do not necessarily represent official
OERI position or policy.

"PERMISSION TO REPRODUCE THIS
MATER L HAS BEEN GRANTED Y

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Dr. William W. Cobern
Assistant Professor of Education
Austin College Sherman, Texas

March, 1986

2 BEST COPY AVAILABLE

www.manaraa.com

Abstract

Given the iricreasing computer exposure that teachers are experi-

encing and the growing number of personally owned computers it is

likely that secondary science teachers will with greater frequency ex-

periment with student programming. Researchers should be interested

in examining th. possible uses for computer programmIn,z1 in science edu-

cation and the structure of languages that might be choosen, vis-a-vis

the educational requirements of the learners.. At this time BASIC and

Pascal are the two most frequently used programming languages in secon-

dary education. Although the use of BASIC has been ;everely criti-

cized because of Its unstructured nature, recent research results tend

to support BASIC as the langauge better matched cognitvely with *he

development levels of typical secondary students.

3

www.manaraa.com

Given that one El interested in using computer programming as an

instructional tool in s%)condary science education, important ques-

tions arlse. Fir3t, why should programming be used at all and second,

which language or languages should be used? this paper I primarily

address the issue of language choice, more specifically the use of

BASIC, rather than a structured language such as Pascal. The case for

BASIC however is an ambiguous one since there is at this time insuffi-

cient empirical evidence to unequivically resolves the issue one way or

the other.

Com2uters and Science Education

My first encounter with a computer occurred when I was an under-

graduate. As science majors we were taught ALGOL so that we could

write programs for solving various mathematical equati,ns used in our

physics and chemistry labs. Later as a high school science teacher,

one fortunate enough to have access at school to a minicomputer via a

remote terminal, I thought my students mitzcht enjoy learning to write

computer programs that could be used to solve mole problems, accelera-

tion problems- or to simply average measurements from control and

experimental groups. I also felt that attempting to write programs

for science-math problems could improve their uncerstanding of those

math relationships. Furthermore, because scientists use computers I

felt that by having my high school students do the same, they would

increase their own sense of "doing sc'-nce." Likt-, many students today

my students did enjQy working with a computrr; and it was my judgement

4

www.manaraa.com

2

that they had a_better understanding of our coursework because they

were programming. But what I was doing was uncommon, given the rarity

of computer access at the high school level.

With the advent of the affordable microcomputer in the late seven-

ties, the use of computers in education has greatly increased. The

recently released "Second National Survey of Instructional Uses of

School Computers" estimates that half of all American secondary

schools have 15 or more microcomputers and that 12 % of all secondary

.science teachers are now using microcomputers (Becker, 1986, pp. 30,

32). According to a RAND study of secondary science.teachers who.arv

considered "successful" users of computers in education, computers are

most often used for drill and practice, tutoring,.simulating, game

playing and management purposes (Shavelson, et al, 1934).

should come as no surprise that student programming is not

listed in the RAND study. As noted by).:he Office of Technical Asses-

sment (1982), a major hindrance to the increased use of modern tech-

nology in the classroom is that teachers lack the necessary technical

knowledge. It is only.to be. expected then that teachers would first

use the more simple forms of a new technology. With respect to micro-

computers that means pre-programmed, commercially available software

used for drill and practice, tutorials, etc. Furthermore there is

less that can be done with student programming than can be done with

prepared software. The result is that computer programming is largely

left to the computer literacy and computer science teachers.

5

www.manaraa.com

3

Nevertheless there is likely to be a change in the current pat-

terns of programming use due to the increasing occu-rence of computer

literacy requirements. School districts arz rkquiring computer liter-

acy for high school graduation, colleges are doing the ame for col-

lege graduation, and states a-e requiring it for teacher certification

(Abernathy & Pettibone, 1984). These requirements coupled with the

growing number of home computers means that virtually all of tJmor-

row's new science teachers will have at least been exposed to a com-

puter programming language. It seems inevitablo that these teachers

are going to experiment with student programming for the same reasons

I did.

If indeed that is what happens, then two basic questions must be

faced by science education researchers:

1. Are there any inEtructional objectives for which an
empirical justification can be shown for using student
programming In secondary science education? For
example, as opposed to other methods, can a motivational
objective be better met with student programming, or does
student programming increase understandinq of science-
related mathematical relationships?

2. GIN/on that it is possible for a teacher to choose from se-
veral programming languages, does the choice of languctge Zor
student programming matter? For e%ample, is Pascal to be
preferred to BASIQ, or perhaps Mo6.ula is preferable?

To date there has not been any research concerning the first question

nor much discussion. There has however been considerable discussion

of the second questIon, though often in the broader context of compu-

ter science education. A teacher's decision to tech and use BASIC

for example, is a controversial one since the use of BASIC is

www.manaraa.com

4

vigorously discouraged by some eminent science educators and computer

scientists (e.g. Bork, 1985; Paper.t, 1980). On the assumption that

science teachers will go ahead and try student programming despite the

absence of empirical justification for doinT so; there is cause to

examine what inormation is available on the issue of language choice.

The Anti-BASIC Position

BASIC and Pascal are the two most commonly used languages at both

the secondary and introductory college lev:ls, whether in science,

matn or computer science. In one sense these two and all other pro-

gramming languages are alike. The hardware of a computer consists of

things like registers and memory cells and can only be communicated

with via binary codes. Programming languages allow the user to think

in terms of variables, data and computations ;Mile still communicating

with the computer'g hardware. On the other hand each language has its

own jrammar and syntax; and while programs for the same outcome coded

in two different languages may have some resemblances, more often than

not they are quite distinct. Furthermore language differences extend

to power, efficiency and struccure. Depending on what one requires in

a language these differences will be more or less important.

Technically, Pascal is superior to BASIC as a language for

serious, adult programmers (see Bork, 1971 a & 1971 b; Dessy, 1983;

Masterson, 1984; and Tesler, 1984). It is generally more efficient

7

www.manaraa.com

5

and more powerful, and it inherently encourages the use of good, modu-

lar programming technique. In contrast BASIC is often referred to as

the "qwerty" typewriter of computer programming languages; that is, it

attained widespread use not because it is the best language currently

available but because it was the ,first microcomputer language avail-

able. The opposition to BASIC has at times been quite polemical. In

fact an article by Mundie (1978) is subtitled "A Polemical Comparison

Of [Pascal and BASIC) As General Purpose Microprocessor Languages."

Bork refers to BASIC as the "junk food" of progrgmming languages and

claims that the "better universitle's" do not use it (1985, p. 29).

Dijkstra says that students exposed to BASIC are "mentally muillated

beyond hope of regeneration" vis-a-vis their potential to become good

programmers (1982, p. 14); and Papert claims that BASIC programmiLg

requires "... so labyrinthine a structure that ... only the most

motivated and brilliant (mathematical) children..." learn to program

beyond the level of triviality (1980, p. 35).

Several points of objection ca.Ln be distilled from the rhetoric.

For instance, BASIC lacks many of the advanced programming features

found in Pascal and which give to. Pascal its superior efficiency and

power. Although this is true, one must ask if it really makes any dif-

ference at the introductory level. For example, the efficiency and po-

wer required for a typical program written by a secondary level chemis-

try student to do gram-mole conversions is easily accommodated within

BASIC. At the school level to say that BASIC is less efficient and

powerful than Pascal, conveys about as much information as say!ng that

8

www.manaraa.com

6

ricrocomputers are less efficient and powerful than mainframe

computers.

Although The above issue of advanced programming features is

often raised, the gravemen of the case against BASIC vis-a-vis Pascal

lies in two quite different points:

1. BASIC is not a structured language like Pascal and using it
fosters poor programming habits that aee very difficult to
break,

2. there is no "ease of learning" advantage that would favor
the use of BASIC over Pascal with introductory students.

These are important instructional concerns and if the objections are

I/valid then the use of BASIC should be reconsidered.

Tbe Obiection to Non-Structured Programming

Structured computer programs are preplanned, modular, heirarch-

sally arranged, readable programs (see Dijkstra, 1976). They tend to

pe more efficient and certainly are easier to debug than non-

gtructured programs. BASIC allows structured programming, but the

relationsnip with structure is laissez faire not demanded as with

pascal. Following the path of least resistance, most students

gpproach BASIC programming solutions to a problem with little fore-

Olought or planning. They program on a "stream of conscious" basis.

l'As programs lengthen, the lack .of planning usually results in more and

9

www.manaraa.com

7

more required "GOTO" statements for the proper control of program

execution. For lengthy programs this unplanned, profligate use of

"GOTO" statements results in spaghetti code, a tangled knot of execu-

tion pathways, a nightmare to debug. Students who are accustomed to

programming in this manner are the ones Dijkstra calls "mentally

mutilated."

The Pascal advantage is that structure is demanded, not merely

allowed by the nature of the programming l'anguage. The question once

again is, does it make any difference at the secondary, introductory

level? Obviously people like Dijkstra and Bork-think that it does.

However their conclusion about the deleterious effects of unstruc7

tured, BASIC programming on future programming ability is based on

personal observations. There are no empirical studies that implicate

BASIC as the causal agent. In fact the hypothesis that learning

unstructured programming hinders the later acquisition of structured

programming skills has not yet been tested in an experimental set-

ting. The closest studies to this are more general studies of predic-

tors of success in college computer science courses and programs.

Factors such as high school math and science background, SAT scores,

IQ, and gender have been found to have positive correlations with suc-

cess in computer science studies which would include structured pro-

gramming (Alspaugh, 1972; Butcher & Muth, 1985; Campbell & McCabe,

1984; Konvalina et al, 1983). In two of these studies, prior computer

programming experience was included as an independent variable but was

not found to correlate significantly with college computer science

1 0

www.manaraa.com

8

success (Butcher & Muth, 1985; Konvalina et al, 1983). Although the

type of prior programming experience is not specified In these

studies, ocle may safely assume that it included BASIC since this is

the most widely taught programming language at the secondary level.

Therefore without further evidence one must at least consider the pos-

sibility that Dijkstra's observations have a cause other than BASIC.

It also should be noted that not eve one who teaches in the

field of programming is a proponent of the structure dogma. There are

those that favor BASIC precisely because it does allow the freeform,

unstructured type of programming that Pascal prohibits. This is not a

lack of planning, but planning in action as opposed to preplanning

(Rogoff and Gardner, 1983). Galanter says "BASIC lets you write pro-

grams the way that Mozart wrote music, by improvising as you go along"

(1983, p. 147). These people recognize that such programming sacri-

fices efficiency and ease of debugging, but consider the gain in cre-

ativity worth the price. For the secondary science teacher, wanting

his students to concentrate on science concepts and not on programming

technique, this may well be a more useful attribute than structure.

The Problem of Cognitive Matching

BASIC is objected to on the grounds that it has no "ease of

learning" advantage over Pascal. No reason exists then for not choo-

sing a superior langUage. Ease of learning depends on the cognitive

match between curriculum demand and cognitive development; the closer

11

www.manaraa.com

9

the match, the greater the ease of learning. In this case curriculum

demand refers to the cognitive prerequisites necessary for learning

BASIC or Pascal. The objection assumes that the minimum cognitive
1

prerequisites for learning both Pascal and BASIC are equally matched

to the cognitive development levels of typical secondary students.

The question of cok,aitive matching has received more attention at

the elementary level generally because of Papert:s (1980) work with

LOGO. Information on using'comptiters with elementary age children fre-

quently notes that a knowledge of child develoPment should guide appro-

priate computer use (e.g. Clements, 1985, p. .127). Zajonc explains

that by inserting "...a device involving formal operations into ear-

lier periods of child development, we risk doing violence to the order-

ly and natural course of child development" (1984, p. 576). The poten-

tial problem is essentially one of cognitive mismatching. The same

concern for the relationship between cognitive development and compu-

ter use (especially programming) at the secondary level has not been

expressed.

It is instructive at this point to consider the British work ia

science education by Shayer and Adey (1983). They studied the cogni-

tive match between the curriculum demand of the Nuffield Science

Programs and the cognitive development levels of the secondary stu-

dents in those programs. Curriculum demand was determined by a cur-

riculum analysis taxonomy that "arranges and classifies (curriculum]

objectives into groups according to (a) the schema or reasoning

12

www.manaraa.com

10

patterns employed, and (b) the stage of cognitive development of which

they are characteristic" (p. 70). The data on student cognitive devel-

opment levels came from a study in which 12,000 nine to sixteen year

olds were asked to complete a set of tasks comprising the Science

Reasoning Tasks inventory. The results supported Shayer and Adey's

main argument, i.e., "...there is a massive mismatch in secondary

schools between the expectations institutionalized In courses, text-

books, and examinations and the ability of childnen to assimilate the

experiences they are given" (p. vi).

Given that secondary science curricula, as demonstrated by the

Shayer-Adey study, are prone to the problem of cognitive mismatching,

it seems eminently reasonable to.assume that computer programming lan-

guages could also cause the same problem; and.if Cognitive development

and curriculum demand are important factors In selecting a curriculum,

then they also should be important factors in selecting a programming

language. A comparison of the results of a cognitive demand study of

BASIC and Pascal and what is known about the cognitive development le-

vels of typical secondary students would be quite informative. Though

there are no studies of this exact nature there are related studies

that can supply useful information.

These studies are in the relatively new research field of the

applied psychology of the computer user. Within this field the term

"task structure" refers to the grammar, syntax and structure of a pro-.

gramming language; and it Is the "task structure" that determines the

13

www.manaraa.com

11

curriculum demand of a language. The guiding model for research on

the applied psychology of computer use is given by Moran (1981, p. 3;

also see Newell and Simon 1972):

user's goal +
task structure +

user's knowledge +
user's processing limits = user's behavior

The "user's goal" is simply what the user intends to accomplish by

using the computer. A biology student, for example, may wish to have

the computer plot the average growth over a series of days of a set of

experimentally treated plants. "Task structure" is what will be used

to accomplish the user's goal. "User's knowledge" refers to how well

the user is able to exploit the task structure.. The "user's proces-

sing limits" refers to both the user's natural ability and level of

cognitive development.

For the purpose of analyzing students' mastery of BASIC program-

ming, the task structure of BASIC can be broken down into six levels:

1. machine
2. transaction
3. prestatement
4. statement
5. chunk
6. program

Level 4, 'statement% literally refers to programming statements such

as PRINT, LET, READ, etc., and subsumes three more detailed levels of

14

www.manaraa.com

12

programming knowledge. Statements in turn are the primary building

blocks of programming. Groups of statements such as would form a

module are called "chunks", level 5. There are'different types of

chunks and level 5 itself can be broken down into three levels of com-

plexity. Lastly, one or more chunks combine to form a "prograM",

level 6 (see Mayer, 1979, p. 590).

The difference between an expert programmer and a novice is the

expert's ability for greater exploitation of the language task struc-

ture. An expert, because he has a good understanding of all struc-

ture levels (with the possible exception of level 1, .1.e. machine.lan-

guage) is not limited to simple statements, but in fact writes pro-

grams based on the upper, more complex levels of the language task

structure. The resulting programs fit the Dijktsra definition of

"structured." In contrast the novice has a very limited ability to

exploit the upper task structure levels and is largely confined to con-

structing programs statement by statement (Moran, 1981;*Mayer, 1981;

Shell, 1981; Shneiderman, 1980).

From a Piagetian perspective the levels of BASIC's task structure

can be characterized as either "more concrete" or "more formal" in na-

ture (see Shneiderman, 1985). At the "Statement" level, tnere is a

one-to-one correspondence between most BASIC statements and a particu-

lar action that contributes to the concreteness of the concept

"Statement". For example:

15

www.manaraa.com

Statement Action

10 PRINT "Hi° Hi

When statements are grouped together as "chunks" to form structures

such as nested loops and recursions, the direct correspondence.between

statement and action is lost. Thus, most chunks are "more formal" in

nature.

In terms of curriculum demand, one would expect less demand at

the "statement" level than at the "chunk" level. A student with lower

"user processing limits" constructs a program based on statements,

while a student with higher "user processing limits" builds a program

from chunks. In practice many secondary students learn simple BASIC

quite quickly. A reasonable explanatory hypothesis is that the range

of , riculum demand within the task structure of BASIC correlates

well with the range of cognitive levels typically found amongst secon-

dary students. There is, in other words, good cognitive matching be-

tween BASIC task structure and secondary students' cognitive maturity.

Given fundamental, structural simularities among all programming

languages, one can assume that the six task structure levels of BASIC

can as well be applied to Pascal. The difference between the two lan-

guages is a result of restrictions on the use of task structure

levels. While BASIC allows the user to build programs from either

statements or chunks, Pascal forces the user to mainly work at the up-

per levels; it demands structure. This is in fact the major Pascal

°advantage according to Pascal proponents. Mundie is quite explicit,

1 6

www.manaraa.com

1 4

"Pascal...allows the programmer to remain on a high level of

algorithmic abstraction, where he functions best..." (1978, p. 42).

An adult, expert programmer may indeed function best at "...a high

level of abstraction but the same can hardly be said for the

typical adolescent. What is an advantage for the mature programmer is

quite likely to be a substantial disadvantage for secondary students.

Some corroboration of this is found in a 1979 study by LaFrance. He

attempted to teach the concept of structured Pascal programming vla a

game-format to a group of gifted nine to twelve year olds but was gen-

erally unsuccessful. The fact that these were "gifted" nine to twelve

year olds lends credence to the hypothesis that a sim,ilar study with

secondary students would have the same result.

Conclusion

If secondary science teachers are not going to employ computer

programming as an instructional technique with any greater frequency

than is now done, then the foregoing is only so much theoretical

arcana. However, as stated at the beginning, the increase in computer

literacy requirements and the increase in the number of personally

owned computers gives rise to the distinct prospect of increased use

of student programming In the science classroom. Accepting that, one

must face two competing, yet legitimate concerns. Computer scientists

are concerned about the prospect of students acquiring Improper pro-

gramming habits, habits that will ill serve them If they later choose

1 7

www.manaraa.com

15

to enter computer related studies. On the other hand ins'.;ructional

experts are more concerned that instructional methods be well su!ted

to students' levels of cognitive maturity and to the subject being

taught.

For many reasons, not the least of whIch is financial, it can be

expected that i3ASIC will remain the language of the status quo for

some time to come At this point the widespread"use of BASIC should

not be considered cauae for alarm since the evidence that is currently

available suggests that BASIC rather than Pascal, is cognitively bet-

ter suited for use with secondary level students. Furthermore there

is as of now no empirical evidence that prior knowledge of unstruc-

tured programming has a significant negative influence on the acquisi-

tion of structured pr,-Jgramming skills. It would be wiser to avoid

rhetorical arguments about the merits and demerits of BASIC and Pascal

and instead pursue relevant research topics, i.e. a thorough examina-

tion of the roles that programming can play in science education, a

rigorous analysis of the task structure and curriculum demand of vari-

ous languages especially Pascal, and a controlled study of the'effect

of prior unstructured programming experience on the acquisition of

structured programming skills.

S

www.manaraa.com

References

Abernathy, S. M. & 2ettibone, T. J. (1984). Computer literacy and
certification: What States are doing. T.H.E. Journal, 12(4), 117-120.

Alspaugh, C. A. (1972). Identification of some components of
computer programming aptitude. Journal for Research in Mathematics
Education, 3, 89-98.

Bayman, P. (1983). The effects of Instructional procedures on
beginning programmers mental models. ERIC document No. 238 406.

Bayman, P. & Mayer, R. E. (1983). A diagnosis of beginning
programmers' misconceptions of BASIC programming statements.
Communications of the ACM, 26(9), 677-679.

Bork, A. (1971 a). Science teaching and computer languages. ERIC
document No. 060 626.

Bork, A. (1971 b). Introduction to computer programming languages.
ERIC document No. 060 620.

Bork, A. (1985). Personal computers for. education. New York: Harper
& Row.

Butcher, D. F. & Muth, W. A. (1985). Predicting performance in an
introductory computer science cour:,e, 28(3), 26'3-268.

Campbell, P. F. & McCabe, G. P. (1984). Pr.-)dicting the success of
freshmen In a computer.science major. Communications of the ACM,
27(11), 1108-1113.

Clementr,, D. H. (1985). Computers in early childhood education.
Educational Horizons, 63(5), 124-127,

Dijkstra, E. W. (1976). A discipline of programming. Englewood
Cliffs: Prentice-Hall.

Dijkstra, E. W. (1982). How do we tell truths that might hurt?
Sigplan Notices, 17(5).

Dessy, R. E. (Ed.) (1983). Languages for the laboratory. Analytical
Chemistry, 55(6), 650A-766A.

Galanter, E. (1983). Kids and computers. New York: The Putnam
Publishing Group.

Konvalina, J. et al (1983). Math proficiency: a key to success for
computer science. Communications of the ACM, 26(5), 377-382.

LaFrance, J. E. (1979). Shall we teach structured programming to
children? ERIC document No. 192 767.

19

www.manaraa.com

Masterson, F. A. (1984) Languages for students. BYTE, D(6), 233-
234,236,238.

Mayer, R. E. (1979). A psychology of learning BASIC. Communications
of the ACM, 22(11), 589-593.

Mayer, R. E. (1981). The psychology of how noVices learn comb-u-ter
programming, ACM Computing Surveys, 13(1), 121-141.

Moran, T. P. (1981). An applied psychology of the user. ACM
Computing Surveys, 13(1), 1-11.

Moyer, P. C. (1985.) Structured prnrammiag techniques in BASIC.
Journal of Compucers in Mathematics and Science Tehing, 4(2), 60-
62

Mundie, 1L) A. (1978). Pascal vs BASIC: a polemical comparison of the
two as (yeneral purpose microprocessor languages. People's
Computers, ::4), 41-47.

Newell, A & 3:men. H. A. (1972). Human problem solving. Englewood
Cliffs: Prentice-all.

Office of Technology Assessment (1982). Information technology and
It Impact on American education. Washington, D.C.

Papert. S. (1980). Mindstorms. New York: Basic Books.

Rogoff, B. & Gardner, W. P. (1983). Guidance in cognitive
development: an examination of mother-infant instruction. In B.
Rogoff & J. Lave (Eds.), Everyday cognition: Its development in
social context. Cambridge: Harvard University Press.

Shavelson, R. J. et al (1984). Teaching mathematics and science: pat-
terns of microcomputer use. The RAND Corporation, R-3180-NIE/RC.

Shayer, M. & Adey, P. (1983). Towards a science of science teaching.
Loncldn: Heinemann Educational Books. See also Pea, R. D. &
Kurland, D. M. (1983). On cognitive prerequisites of learning
computer programming (Technical Report No. 18). New York: Bank
Street College of Education.

Shell, B. (1981). Psychological study of programming. ACM Computing
Surveys, 13(1), 101-120.

Shneiderman, B. (1980). Software psychology: Human factors in
computer and information systems. New York: Winthrop Co.

Shneiderman, B. (1985). When children learn programming: antecedents,
concepts and outcomes. The Computing Teacher, 12(5), 14-17.

20

www.manaraa.com

Tesler, L. G. (1984). Programming languages. Scientific America,
251(3), 70-78.

Zajonc, A. G. (1984). Computer pedagogy? Questions concerning the
new educational technology. Teachers College Record, 85(4), 569-577.

21

