DOCUMENT RESUME

ED 280 737 SE 047 901
AUTHOR Cobern, William W.
TITLE Programming Language Choice: A Positive albeit

Ambiguous Case for BASIC Programming in Secondary
Science Teaching.

PUB DATE Mar 86

NOTE 21lp.

PUB TYPE Viewpoints (120) -- Guides - Non-Classroom Use (055)
EDRS PRICE MFN1/PC01 Plus Postage.

DECCRIPTORS Cognitive Development; *Computer Science Education;

*Computer Uses in Education; Educational Technology:
Instructional Improvement; Programing; *Programing
Languages; Science Education; Secondary Education;
*Secondary School Science; *Skill Development

IDENTIFIERS *BASIC Programing Language; *PASCAL Programing
Language

ABSTRACT

With the purpose of addressing the area of language
choice in computer programming, this paper specifically addresses the
use of BASIC as a language for seccndary level students. Perspectives
are offered on: (1) the role of computers in science education; (2)
the differences in quality and intent of PASCAL and BASIC; (3) the
role of a non-structured programming language approach; and (4) the
problem of cognitive matching. An increase in research is advocated
for such areas as the roles of programming in science education, an
analysis of the task structure and curriculum demand of languages
such as PASCAL, and the effect of prior unstructured programming
experience on the acquisition of structured programming skills. A
reference list is also provided. (ML)

xS E RS A SRR AL R LR LR SRR SRR E RIS E LRSI LTI TSRS XTI LT X

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
I E X R R R SRR SR SRR LSS AR RS E R AL SRR RS R R RS RS RS RS RS RS R EE LSRR L L L




Programming Language Cholce: a Positive Albelt Ambiguous

Case for BASIC programming in Secondary Scieace Teacl.ing

U.8. OEPA: MENT OF EDUCATIOH
Otfice of Educationai Research and Inipro ament

EDUCATIONAL RESOURCES INFORMAT.ON

CENTER({ERIC)
Y{his document has been repr>duced as

eceived from the person or wrganization
riginating it
O Minor changes have been made to improve
reproduction quality.

£0280737

® Points of view or opinions stated inthis decu-
ment do not necessarily represent official
OER! position or policy.

“PERMISSION TO REPRODUCE THIS

. MATERIAL HAS BEEN GRAN%Y

TO THE EDUCATIONAL RESOURCES
INFORMAT!ON CENTER (ERIC)."

Dr. Willlam W. Cobern
Assistant Professor of Educatlion
Austin College Sherman,

Texas
March, 1986

Se047 76/

o o BEST Copy
e VAILABLE

Aruitoxt provided by Eic:

—



Abstract

Glven the increasing computer exposure that teachers are experi-
enciny and the growing number of personally owned cémputers it is
likely that secondary sclence teachers will with greater frequéncy ex-
periment with student programming. Researchers should be interested
In examinling th» possible uses for computer progtamming In sclence edu-
cation ancd the structure of languages that might be dhoosen, vis-a-vis
the educational requirements of the learners. At this time BASIC and
Pascal are the two most frequently used programming languages in secon-
dary education. Although the use of BASIC has been severely criti-
cized because of its unstructured nature, recent research results tend
to support BASIC as the langauge better matcﬁgd cbgnitvely with *the

development levels of typical secondary students.




Glven that one 2 interested In using computer programming as an
Instructional tool in sicondary sclence education, Important ques-
tions arise. First, why should programming be used at all and second,
which language or langﬁages should be used? fn this paper I primarily
address the {ssue of langyuage cholce, more Specificélly the use of
BASIC, rather than a structured language szuch as Pascal. The éase for
BASIC however is an ambiguous one-since there is at this time Insuffi-
clent empirical evidence to unequivically resolvi the Issue one way or

the other.

ience Education

My first encounter with a computer occurred when I was an under-
graduate. As science majors we were taught ALGOL so that we could
wrlte programs for solving various mathematical equati.ns used in our
physics and chemistry labs. Later as a high school sclience teacher,
one fortunate enough to have access at school to a minicorputer via a
remote terminal, I thought my students might enjoy learning to write
computer programs that could be used to solve mole proklems, accelera-
tion problems. or to simply average measurements from control and
experimental groups. J also felt that attempting to write prograns
for science-math problems could improve their uncerstanding of those
mate relationships. Furthermore, bécause scientists use computers I
felt tnat by having my high schocl students do the sanme, they woulgd
Increase the'lr own sense of "dolng scl:nce.* Like many students today

my students did enjey working with a computer; and 1t was my judgement



that they had 3 better understanding of our coursework because they

were programming. But what I was doling was uncommon, glven the rarity

of computer access at the high school level.

With the advent of the affordable microcomputer in the late seven-
ties, the use of'computers In education has greatly increased. The
recently released “Second National Survey of Instructional Uses of
School Computers” estimates that half of all Amerlcan secondary
schiools have 15 cr more microcomputers and that 12 % of all secondary
~sclence teachers are now usling microcomputers (Becker, 1986, pp. 30,
32). According to a RAND study of secondary science .teachers who arv
considered “"successful® users of computers in education, computers are

most often used for dril! and practice, tutoring, simulating, game

playing and management purposes (Shavelson, et al, 1934).

-t should come as no surprise that student programming ls not
listed in the RAND study. As noted by the Office of Technical Asses~
sment (1982), a major hindrance to the increased use of modern tech-
nology in the classroom is that teachers lack the necessary technical
knowledge. It is only to be expected then that teachers would first
use the more simple forms of a new technology. With respect to micro-
Computers that means pre-programmed, commerclally avallable software
used for drlll and practice, tutorials, etc. Furthermore there |s
less that can be done with student programming than can be dcne with
prepared software. The result is that computer proyramming -Is largely

left to the computer llteracy and computer sclience teachers.




Nevertheless there 13 likely to be a change In the current pat-
terns of programming use due to the Increasing occurrence of computer
literacy requirements. School districts arc '« Juiring computer liter~-
acy'for high school graduation, colleges are doing the ._ame for coi-.
lege graduation, and states ave requiring it for teécher certification
(Abernathy & Pettibone, 1984). These requirements coupled with the
growing number of home computers means that virtuglly all of tumor-
row’s new sclence teachers will have at least been exposed t{vo a com-
puter programming language. It seems inevitabler that'these teachers

are going to experiment with student programming for the same reasons

I qdid.

If indeed that iIs what happens, then two basic questions must be

faced by science education res:archers:

1. Are there any instructinnal obiectives for which an
empirical justification can be shown for using student
programming in secondary sclence education? For
example, as opposed to other methods, can a motivational
objective be better met with student programming, or does
student programming increase understanding of sclence-
related mathematical relationships? -

2. Given that It is posslble for a teacher to choose from se-
veral programming languages, does tlie cholce of language for
student programming matter? For enample, is Pascal to be
preferred to BASIC, or perhaps Mocula is preferable?

To date there has not been any research concerning the first question
nor much discussion. There has however been considerable discussion
of the se¢cond questlon, though often In the broader context of compu- .

ter sclence education. A teucher’s decision to tesrch and use BASIC

for example, Is a controversial cne since the use of BASIC Is




vigorously dlscouraged by some eminent sclence educators and computer
sclentists (e.g. Bork, 1985; Papert, 1980). On the assumptlon that
science teachers wlll go ahead and try student programming despxte the
apsence of empxrical justification for doing sc, there Is cause to

examine what Information is avallable on the lssue of language choice.

BASIC and Pascal are the two most commonly used languages at both
the secondary and introductory college lev:ls, whether in science,
math or computer science. In one sense these two and all other pro-
gramming languages are alike. The hardware of a computer consists of
things like registers and memory cells and can only be communicated
with via blnary codes. Programming languages allow the user to think
in terms of varliables, data and computations while still communicating
with the computer’s hardware. On the other hand each language has its
owWwn jrammar and syntax; and while programs for the same outcome coded
in two different languages may have some resemblances, more often than
not they are quité distinét. Furthermore language differences extend
to power, efficiency and struciure. Depending on what one requires in

a language these differencés will be more or less lImportant.

Technically, Pascal .is superior to BASIC as a language far
serious, adult programmers (see Bork, 1971 a & 1971 b; Dessy, 1983;

Masterson, 1984; and Tesler, 1984). It is generally more efficlent




and more powerfﬁl, and 1t inherently encourang the use of good, modu-
lar pregramming technique. In contrast BASIC Is often referred to as
the "qwerty" typewriter of computer programming languages; that Is, 1|t
attalned widespread use not Because it iIs the Qg;g language currently
avallable but because It was the first microcomputer language avall-
able. The opposition to BASIC has at times been quite polemical. Iu
fact an article by Mundie (1978) Is subtitled "A Polemical Comparison
Of [Pascal and BASIC! As General Purpose Microprocessor Languages.”
Bork refers to BASIC as the “junk food" of programming languages and
clains that the "better unlversities® do not use 1t (1985, p. 29).
Dijkstra says that students exposed.to BASIC aré "mentally muﬁilated
beyond hope of regeneration® vis-a-vis their potential to become good
programmers (1982, p. 14); and Papert claims that BASIC progfammlng

requires so labyrinthline a structure that ... only the most
motivated and brilliant (mathematical) children..." learn to program

beyond the level of twiviality (1980, p. 35).

Several points of objection can be distilled from the rhetoric.
For instance, BASIC lacks many of the advanced programming features
found in Pascal and which glive tO'RaSCaI its superior.efficiency and
power. Although this Is true, oné must ask if It really makes any dif-
ference at the introductory levél. For example, the e€efficiency and po-
wer requlred for a typical program written by a secondary level chemis-
try student to do gram-mole conversions Is easlly accommodated within
BASIC. At the school 1e§e1 to say that BASIC Is less efficient and

powerful than Pascal, conveys about as much information as sav!ing that



bnﬂcrocomputers are less efflclent and powerful than malnframe

computers,

Although The above issue of advanced programming features is
often ralsed, the gravemen of the case against BASIC vis-a-vis Pascal

1les In two quite dlfferent points:

1. BASIC is not a structured language like Pascal and using it
fosters poor programming habits that are very difficult to
break,

2. there Is no "ease of. learning™ advantage that would favor

the use of BASIC over Pascal with introductory students.

fthese are important instructional concerns and if the objections are

D\ﬂﬂid then the use of BASIC should be recoasidered.

fhe _QObiection_ to Non-Structured Programming

Structured computer programs are preplanned, modular, heirarch-
jally arranged, readable programs (see Dijkstra, 1976). They tend to
pe more efficient and certainly are eaéier to debug than non-
structured programs. BASIC allows structured programming, but the
relationsnip with structure is laissez falre not demanded as with
Pascal. Following the path of least resistance, most students
g@pproach BASIC programming solutions to a problem with little fore-
thought or planning. They program on a ®“stream of consclous® basis.

Dhs programs lengthen, the lack »f planning usually results in more and




more requlred “GOTO" statements for the proper control of progran
executlon. For lengthy programs this unplanned, profligate use of-
"GOTO" statements results In spaghetti code, a tangled knot of execu-
tion pathways, a nightmare to debug. Students who are accustomed fo
programming in this manner are the ones Dijkstra calls "mentally

mutilated."

The Pascal advantage Is that structure is demanded, not merely
allowed by the nature of the programming lénguag;} The question once
again is, does it make any differenge at the secondary, introductory
level? Obviously people like Dijkstra and Bork think that It does.
However their conclusion about the deleterious effects of unstruc-
tured, BASIC programming on future programming ability is based on
personal observations. There.are no empirical studies that implicate
BASIC as the causal agent. In fact the hypotﬁesis that learning
unstructured programming hinders the later acquisition of structured
programming skills has not yet been tested in an experimental set-
ting. The closest studies to this are more general studies of predic-
tors of success in college computer science courses and programs.
Factors such as high school math aqq science backgrbund, SAT scgres,
1@, and gender have been found to H;ve bositive correlations with suc-
cess in computer science studies which would include structured pro-
gramming (Alspaugh, 1972; Butcher & Muth, 1985; Campbell & McCabe,
12845 Xonvalina et al, 1983). 1In two of these studies, prior computer
programming experience was included as an independent variable but was

not found to correlate significantly with college computer science

10



success (Butcher & Muth, 1985; Konvalina et al, 1983), Although the
type of prior programming experience is not specified in these
studies, oar may safely assume that it included BASIC since this is
the most widely taﬁght programming language at the secondary level.
Therefore without further evidence one must at least consider the pos-

sibility that Dljkstra’s observations have a cause other than BASIC.

It also should be noted that not eve one who teaches in the
field of programming is a proponent of the strucfhre dogma. There are
those that favor BASIC precisely because it does allow the freeform,
unstructured type of programming that Pascal proﬁibits. This Is not a
lack of planning, but planning in action as opposed to preplanning
(Rogoff and Gardner, 1983). Galanter says "BASIC lets you write pro-
grams the way that Mozart wrote music, by Iimprovising as you go along"
(1983, p. 147). These people recognize that Quch programming sacri-
fices'efficiency and ease of debugging, but consider the galn in cre-
ativity worth the price. For the secondary sclience teacher, wanting

his students to concentrate on science concepts and not on programming

technique, this may well be a more useful attribute than structure.

The_Problem_of Cognitive Matching

e e e s e S e e S e -

BASIC is objected to on the grounds that it has no "ease of
learning® advantage over Pascal. No reason exists then for not choo~
sing a superior language. Ease of learning depends on the cognitive

match between curriculum demand and cognitive development; the closer

11




the match, the greater the ease of learning. In this case curriculum
dehand refers to the cognltlive prerequisites necessary for learnling
BASIC or Pascal. The objectlon assumes that the minimum cognltlve

{

prereduisites for learning both Pascal and BASIC are equally matched

to the cognltlive develiopment levels of typlcal secondary students.

The question of coganitive matchling has recelved more attention at
the elementary level generally because of Papert®s ({980) work with
LOGO. Infbrmation.oh using‘compdters with elementary age children fre-
quently notes that a‘knowledge of chlild development should'guide appro-
prlate computer use (e.g. Clements, 1985, p. 127). Zajonc explalns
that by lnserting “...é device Involving formal operatlons Into ear-
lier periods of child development, we risk doing violence to the order-
ly and natural course of child development"” (1984; p. 576). The po¢ten-
tial problem is essentially one of cognitive mismatching. The same
concern for the relationship between cognitive development and compu-

- ter use (especlally programming) at the secondary level has not been

expressed.

It is instructive at this point to consider the Britisﬁ work ia
sclence educatlon by Shayer and Adey (1983). They studled the cogni-
tive match between the curriculum demand of the Nuffield Sciesace
Programs and the cognitive development levels of the secondary stu-
dents in those programs. Curriculum demand was determined by a cur-
riculum analysis taxonomy that "arranges and classifies (curriculum]

objectives Into groups according to ¢a) the schema or reasonlng

12




10

batterns employed, and (b) the stage of cognltlve development of whlch
the?‘ére éhé}écferlgﬁlé' fé.“70)..-fhe.data on student cognitive devel=-
opment levels came from a study in which 12,000 nine to sixteen year
olds were asked to complete a set of tasks comp;islng the Science |
Reasoning Tasks Inventory. The results supported Shayer and Adey’s
main argument, i.e., "...there is a massive mismatch in secondary
schools between the expectations institutionalized in courses, text-—

books, and examinations and the abllity of children to assimilate the

experiences they are given" (p. vi).

Given that secondary science curricula, as demcnstrated by the
Shayer-Adey study, are prone to the problem of cognitive mismatching,
it seems eminently reasonable to assume that computer programming lan-
guages could also cause the same problem; and.if cognitive development
and curriculum demand are important factors in selecting a curriculunm,
then they also should be Important factors In selecting a programming
language. A comparison of the results of a cognitive demand study of
BASIC and Pascal and what is known about the cognitive development le-
vels of typical secondary students would be quite informative. Though
there are no studlies of this exact nature there are relatea studies

that can supply useful information.

These studies are in the relatively new research field of the
applied psychology of the computer user. Within this field the ternm
"task structure® refers to the grammar, syntax and structure of a pro-

gramming language; and It i{s the "task structure” that determines the

13




i1

curriculum demand of a language. The gulding model for research on

the applied psychology of computer use is glven by Moran (1981, p. 3;

also see Newell and Simon 1972):

user’s goal +
task structure +
user’s knowledge + :
user’s processing limits = wuser’s behavior

The "use{’s goal®” is simply what the user intends to éccomplish by
'uslng the computer. A biology student, for example, may wish to have
the computer plot the average growth over a series of d;ys of a se£ of
experimentally treated plants. “"Task structure® is Qhai will be used
to accomplish the user’s goal. "User’s Knowledge” refers to how well
the user is able to exploit the task structure. The "user’s proces-

slng limits" refers to both the user’s natural ability and level of

cognltive development.

For the purpose of analyzing students’ mastery of BASIC program-

ming, the task structure of BASIC can be broken down into six levels:

1. machine

2. transaction
3. prestatement
4. statement

5. chunk

6. program

Level 4, "statement™, literally refers to programming statements such -

as PRINT, LET, READ, etc., and subsumes three more detalled levels of

14




12

programming knowledge. Statements In turn are the primary bulldlng -
blocks of programming. Groups of statements such as would form a
module are calléd "chunks®", level 5. There are‘'dlfferent types of
chunks and level 5 itself can be broken down Into three levels of com-~
plexzity. Lastly, one or more chunks combine to form a "program®,
level 6 (see Mayer, 1979, p. 590).

The difference between an expert programmer énd a novice 1s the
expert’s ability for gréatér expioitation of the language task struc-
ture. An expert, because he has a géod understand{ng of all struc-
ture levels (with the possible exception of'lével 1,'i.e. machine. lan-
guage) is not limited to simple statements, but in fact wrltés pro-
grams based on the upper, more complex levels 6f the language task
structure. The resulting programs fit the Dljktsra deflnlition of
"structured.” In contrast the novice.has a very limitea ability to
exploit the upper task structure levels and is largely confined to con-
structing programs statement by statement (Moran, 1981;'Mayer, 1981;

Sheil, 1981; Shneiderman, 1980).

From a Piagetian perspective the levels of BASIC’s task structure
can be characterized as either "more concrete® or “"more formal” io na-
ture (see Shneiderman,'1985}. At the "Statement” level, taere is a
one-to-one correspondence between most BASIC statements and a partlcu-
lar actlon that contributes to the concreteness of the concept

"Statement”. For exémple:

15




Statement L . Actlon

—— s vy G S S S S — . S i t—
[

10 PRINT °“Hi" ' Hi

When statements are grouped together as “"chunks" to form structures
such as nested loops and recursions, the direct correspondence -between
statement and action is lost. Thus, most chunks are "more formal" in

nature.

In terms of curriculum demand, one would expect less demand at
the “"statement”™ level than at the "chunk" level. A student with lower
"user processing limits" constructs a program based on statements,
while a student with higher “"user processing limits" builds a program
from chunks. 1In practice many secondary students learn simple BASIC
quite quickly. A reasonable explanatory hypofhesis is that the range
of .- riculum demand within the task structure of BASIC correlates
well with the range of cognitive levels typically found amongst secon-
dary students. There is, in other words, good cognitive matching be~

tween BASIC task structure and secondary students’ cognitive maturity.

Given fundamental, structural simularities among all programming
languages, one can assume that the six task structure levels of BASIC
can as well be applied to Pascal. The difference between the two lan-
guages is a result of restriction5 on the use of task structure
levels. While BASIC allows the user to build programs from either
statements or chunks; Pascal forces the user to mainly work at the up-
per levels; 1t demands structure. This 1s in fact the major Pascal

"advantage” according to Pascal proponents. Mundie is quité explicit,

16




14

"Pascal...allows the programme" to remaln on a high level of
algorithmic abstraction, where he functions best...; (1978, p. 42).

An adult, expert programmer may lndeed function‘best at "...a high
level of abstraction ...". but the same can hardly be said for the
typlcal adolescent. What is an advantage for the mature programmer f{s
quite likely to be a substantial disadvantage for secondary students.
Some corroboration of this is found in a 1979 study by LaFrance. He
attempted to teach the concept of structured Pascal programming via a
game-format to a group of gifted nine to twelve year olds but was gen-
erally unsuccessful. The fact that these were "gifted” nine to twelve

year olds lends credence to the hypothesis that a similar study with

secondary students would have the same result.

Conclusion

If secondary sclence teachers are not going to employ computer
programming as an lInstructional technique with any greater frequency
than is now done, then the foregoing is only so ﬁuch theoretical
afcana. However, as stated at the beginning, the iIncrease in computer
literacy requirements and the increase in the number of personally
owned computers gives rise to the distinct prospect of increased use
of student programming in the science classroom. Accepting that, one
must face two competing, yet legitimate concerns. Computer scientists
are concerned about the prospect of students acquiring fmproper pro-

gramming habits, hablts that will ill serve them !f they later choose

17




15

to enter computer related studies. On the ¢ther hard ins:cructional
experts are more concerned that lnstructional methods ke well sufted
to students’ levels of cognitive maturity and to the subject being

taught.

For many reasons, not the least of which is financial, it can be
expected that BASIC will remain the language of the status quo for
some time to come. At this point the widespread use of BASIC should
nct be consldered causé for alarm since the evidence that is currently
available tuggests that BASIC father.than Pascal, is cognitively bet-~
ter suited for use with secondary level students. Fufthermore thgre
is as of now no empirical evidence that prior Knowledge of unstruc-
tured programming has a significant negative influence on the acquisi-
tion of structured programming skills. It would be wiser to avoid
rhetorical arguments about the merits and.demerits of BASIC and Pascal
and instead pursue relevant research toplics, i.e. a thorough examina-
tion of the roles that programming can play in science education, a
rigorous analysis of the task structure and curriculum demand of vari-
ous languages especlally Pascal{ and a controlled study of the effect
of prior unstructured programming;é#pegience on the acquisition of

structured programming skills.

18




References

. Abernathy, S. M. & Pettlbone, T. J. (1984). Computer lliteracy and
certiflicatlon: What States are dolng. T.H.E. Journal, 12¢4), 117-120.

Alspaugh, C. A. (1972). Identliflcatlon of some components of _
computer programming aptlitude. Journal for Research in Mathematlics
Education, 3, 89-98.

Bayman, P. (1983). The effects of Instructlonal procedures on
beginning programmers’ mental models. ERIC document No. 238 406.

Bayman, P. & Mayer, R. E. (1983). A diagnosis of beginning
programmers’ misconceptions of BASIC programming statements.
Communications of the aCM, 26¢9), 677-679.

Bork, A. (1971 a). Sclence teaching and computef languages. ERIC
document No. 060 626.

Bork, A. (1971 b). Introduction to computer programming languages.
ERIC document No. 060 620.

Bork, A. (1985). Personal computers ior-educétion. New York: Harper
& Row. - :

Butcher, D. F. & Muth, W. A. (1985). Predicting performance in an
Introductory computer science course, 28(3), 263-268.

Campbell, P. F. & McCabe, G. P. (1984). Pradicting the success of
freshmen In a computer.sclence major. Communications of the ACM,
27¢11>, 1108-1113.

Clements, D. H. (1985). Computers In early childhood education.
Educational Horizons, 63(5), 124-127.

Dijkstra, E. W. (1976). A discipline of programming. Englewood
Cliffs: Prentice-Hall.

DijKstra, E. W. (1982). How do we tell truths that might hurt?
Sigplan Notlices, 17(¢(5). ) - . .

Dessy, R. E. (Ed.) (1983). Languages for the laboratofy; Analytical
Chemistry, 55(6), 650A~766A.

Galanter, E. (1983). Kids and computers. New York: The Putnam
Publishing Group.

Konvalina, J. et al (1983). Math proficliency: a key to success for
computer sclence. Communications of the ACM, 26(5), 377-382.

LaFrance, J. E. (1979). Shall we teach structured programming to
chlldren? ERIC document No. 192 767.

19




Masterson, F. A. (1984). Languages for students. BYTE, ¢(6), 233~
234’235’238',

Mayer, R. E. (1979). A psychelogy of learning BASIC. Communications
of the ACM, 22(11), 589-593.

Mayer, R. E. (1U81). The psychology of how no&ices learn combutef
programming, ACM Computing Surveys, 13C¢1), 121~141.

Moran, T. P. (1981). An applied psycholcgy of the user. ACM
Computing Surveys, 13(l), 1-11.

Moyer, P. C. (1985). Siructured programming techniques in BASIC.
Journal of Conmputers in Mathematics and Science Tezching, 4(2), 60-
62.

-

Mundie, D. 4. (1%78). Pascal vs BASIC: a polemical comparison of the
two as «eneral purpose microprocessor languages. People’s
Computers, 3{4), 41-47.

Newell, A. & SBimcn, H. A. (1972). Human problem solving. Englewood
Cliffs: Prentice-‘iall. "

Office of Technology Assessment (1982). Information technology and
i1t Jmpact on Amerlican education. Washlington, D.C.

Papert. S. (1980). Mindstorms. New York: Basic Books.

Rogoff, B. & Gardner, W. P. (1983). Gulidance in cognitive
development: an examination of mother-infant instruction. In B.
Rogoff & J. Lave (Eds.), Everyday cognition: Its development in
social context. Cambridge: Harvard University Press.

Shavelson, R. J. et al (1984). Teaching mathematics and sclence: pat-
terns of microcomputer use. The RAND Corporation, R-3180-NIE/RC.

Shayer, M. & Adey, P. (1983). Towards a sclence of science teaching.
London: Heinemann Educational Books. See also Pea, R. D. &
Kurland, D. M. ¢1983). On cognitive prerequisites of learning
computer programming (Technical Report No. 18). New York: Bank
Street College of Education.

Shell, B. (1981). Psychological study of programming. ACM Computing
Surveys, 13(1), 101-120.

Shneiderman, B. (1980). Software psychology: Human factors in
computer and Information systems. New York: Winthrop Co.

Shnelderman, B. (1985). When chlldren learn programming: antecedents,
concepts and outcomes. The Computing Teacher, 12(5), 14-17. '

20




Tesler, L. G. €1984). Programming languages. Scientific America,
251¢3), 70-78.

Zajonc, A. G. €1984). Computer pedagogy? Questlions concerning the
new 2ducational technology. Teachers College Record, 85(4), 569-577.

!

21




